Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes.

نویسندگان

  • Andrzej L Sobolewski
  • Wolfgang Domcke
  • C Hättig
چکیده

The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20-23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson-Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson-Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic (1)pi pi * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson-Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing (1)pi pi * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations.

Photoinduced processes in the Watson-Crick guanine-cytosine base pair are comprehensively studied by means of long-range corrected (LC) TDDFT calculations of potential energy profiles using the LC-BLYP and CAM-B3LYP functionals. The ab initio CC2 method and the conventional TDDFT method with the B3LYP functional are also employed to assess the reliability of the LC-TDDFT method. The present app...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs.

It has been reported that 8-oxo-7,8-dihydro-guanosine (8-oxo-G), which is the main product of oxidative damage of DNA, can repair cyclobutane pyrimidine dimer (CPD) lesions when incorporated into DNA or RNA strands in proximity to such lesions. It has therefore been suggested that the 8-oxo-G nucleoside may have been a primordial precursor of present-day flavins in DNA or RNA repair. Because th...

متن کامل

Ultrafast deactivation of an excited cytosine-guanine base pair in DNA.

Multiconfigurational ab initio calculations and QM/MM molecular dynamics simulations of a photoexcited cytosine-guanine base pair in both gas phase and embedded in the DNA provide detailed structural and dynamical insights into the ultrafast radiationless deactivation mechanism. Photon absorption promotes transfer of a proton from the guanine to the cytosine. This proton transfer is followed by...

متن کامل

Polarization, Isopotential Maps and Tunneling in Guanine, Cytosine, and Tautomeric Forms

We have used the CNDO/2-CI method to calculate the isopotential maps for the fundamental state and the direction of the polarizations corresponding to several singlet transitions in the mole­ cules of guanine, cytosine and tautomeric forms. We have also calculated the times for proton tunneling and equilibrium constants between both conformers corresponding to the fundamental and some excited s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 50  شماره 

صفحات  -

تاریخ انتشار 2005